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Abstract—All individuals have a unique gait signature, or
walking style, that can serve as their biometric identifier. While
recent research has shown that deep neural networks can
perform effective gait recognition, these studies often prioritize
classification accuracy with little regard to model complexity
and hardware efficiency. In this paper, an efficient four-layered
convolutional neural network (CNN) model is proposed for real-
time gait-based person identification targeting edge devices such
as wearables, microcontrollers, and neuromorphic chips. This
model is trained on a public gait dataset augmented with custom
collected data, totaling to 24 classes. Despite its relatively small
size (236 KB), the model achieves a high accuracy of 96.7%. It
delivers fast inference time of 70 ms requiring only 5 KB of RAM
and consumes just 125 mW power during continuous inference
on an Arduino Nano 33 BLE Sense. Model efficacy is further
demonstrated by converting proposed CNN to a spiking neural
network (SNN) and running realtime inference on BrainChip’s
neuromorphic platform, Akida SoC, within 72 mW power.

Index Terms—Human Gait, Biometric Identification, Inertial
Sensors, Arduino, Neuromorphic Akida, Edge Al

I. INTRODUCTION AND BACKGROUND

Mobile phones and wearable edge devices have become an
integral part of our everyday lives. Sensitive private informa-
tion and data are increasingly being stored in these devices.
Therefore, it is essential to safeguard these data in a trusted
manner to prevent breaches from unauthorized and malicious
threats. While biometric features are utilized for identification,
including passcodes, facial recognition, and fingerprints, they
can be compromised [1] and are only presented as an initial
authentication. Unauthorized users can gain access to these
devices if the authentication is not constantly and dynamically
performing identification, which, with traditional authentica-
tion, can either be expensive or impractical.

Gait analysis is seen as a promising alternative to traditional
authentication methods. Gait is the distinct walking signature
pertaining to an individual, carrying inherent characteristics
that can be leveraged for non-intrusive person identification.
Compared to traditional and static biometrics, gait analysis
taps into the dynamic and behavioral aspects of an individual’s
movement. Each person has a distinct gait, influenced by
factors like anatomy, musculoskeletal structure, and personal
habits. Previous studies have demonstrated that the gait sig-
nature of an individual cannot be replicated or copied [2].
With all smartphones and wearable devices containing inertial
measurement unit (IMU) sensors, it is possible to dynamically
profile a person’s gait for more secure and personal authenti-
cation. Traditionally, machine learning algorithms have been

used for gait identification; deep learning techniques have been
employed to great effect [3] more recently.

Existing gait identification works predominantly focus on
model accuracy rather than model efficiency [4]-[8]. Hard-
ware efficiency becomes a metric of paramount importance
for edge-based gait recognition on devices such as wear-
ables, microcontrollers, smartphones, and neuromorphic chips.
Akida System-on-Chip (SoC) [9] is a neuromorphic processor
developed by BrainChip targeting efficient edge inference
with online learning. MetaTF [10] is their Machine Learning
framework facilitating the training, testing, and deployment of
neural networks on Akida. It contains four main components -
(i) a model zoo containing TensorFlow/Keras-defined models
that can be quantized and are compatible with Akida, (ii) a
framework for quantizing deep learning (DL) models, (iii) a
conversion tool to convert DL. models to neuromorphic spiking
neural network (SNN) models compatible with Akida, and (iv)
an interface to the Akida processor.

In this paper, a streamlined four-layer convolutional neural
network (CNN) model is proposed that is both lightweight
and highly efficient, fit for edge and mobile deployment for
dynamic real-time gait analysis. The model is trained on a
version of the public dataset whuGAIT [11], supplemented
with additional user-based gait data belonging to the authors to
demonstrate real-time inference demonstration. The Arduino
Nano 33 BLE Sense board is selected as the vehicle platform
for evaluation and inference. Additionally, the four-layer CNN
model is converted to an analogous event-based spiking neural
network using the Brainchip MetaTF framework to obtain
power and latency measurements on the Brainchip Akida
board. The highlights and contributions of this work include:

o A light-weight four-layered CNN model for gait analysis
is presented that performs close to prior state-of-the-art
CNN models, while supporting four additional classes.

o Augmentation of a public dataset with user-based gait
data is performed to report live inference classification,
demonstrating quick re-training for the model.

« Inference results through deployment of the four-layered
CNN model on an Arduino Nano 33 BLE Sense board
are analyzed and discussed. The model only consumes 5
KB RAM and 236 KB flash storage.

o Further, an event-based SNN analogous to the proposed
CNN model is generated and deployed on the Brainchip
Akida neuromorphic processor, and the resultant latency
and power metrics are compared to see the efficacy of
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Fig. 1. Raw data samples from each of the 20 classes of whuGAIT. Each sample has 128 length with 3-axis accelerometer and 3-axis gyroscope data.

event-based SNN models for gait analysis.

The paper is structured as follows. Section II discusses
the methods used in this work, including dataset preparation,
model architecture, training, and inference pipeline. In Section
III, model deployment on various platforms and the resulting
inference are reported and analysed, comparing against pre-
vious works. Finally, Section IV summarizes the results and
findings of the study and discusses future research directions.

II. METHODS

This section details the methods and experimental setup
used in this work. First, the publicly available dataset used is
discussed, followed by our custom data collection procedure
for data augmentation. We then describe our proposed model
architecture, training methodology and the edge inferencing
pipeline on two hardware devices, namely Arduino Nano 33
BLE Sense and neuromorphic Akida SoC from BrainChip.

A. whuGAIT Dataset

The primary dataset used is whuGAIT [11]. The overall
data collection process involves a total of 118 subjects, out of
which 20 subjects gathered thousands of samples each over
a span of two days. The remaining 98 subjects undertook a
more concise data collection spanning one day resulting in
hundreds of samples each. Each data sample comprises both
3-axis accelerometer and 3-axis gyroscope data, all recorded
at a uniform sampling rate of 50 Hz.

Among the various sub-datasets of whuGAIT, dataset#2 is
chosen for this work since it utilizes only the first set of 20
subjects as opposed to all 118, keeping the total number of
classes to 20. It consists of 49,275 samples, of which 44,339
samples are used for training and the rest 4,936 for testing.
Each raw data sample has a length of 128. One example of
raw data from each class is shown in Figure 1.

B. Custom Data Collection

Further, we augment the whuGAIT dataset with custom
collected data for four new classes. The custom data not only
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Fig. 2. Automatic segmentation of raw gait data using DCNN to extract
walking periods.

illustrates the model’s capability to learn additional classes but
also enables live demonstration as will be discussed later in
Section IIl. The data was collected for walking at multiple
paces back and forth, on carpeted and non-carpeted floors for
better generalization. Our final model uses spectral feature
extraction on this raw data for ease of live deployment and
demonstration. We have also created a custom data prepro-
cessing pipeline as explained next.

Our initial implementation involves manually splitting the
collected data into 3-second gait segments using the visual-
ization tool provided by Edge Impulse (EI) [12]. However,
this manual methodology is inconvenient for collecting large
amounts of data. To facilitate automated preprocessing, we
use a one-dimensional DCNN [11] model to extract walking
period based on its semantic difference with non-walking (e.g.,
standing, running) period. The result is shown in Figure 2.
The blue zigzag line represents the collected activity data,
which includes walking, stopping, and random movement in
different directions and slopes. The green part of the straight
line indicates a walking data segment, while the red part
indicates a noise period that should be discarded. The extracted
walking data is then segmented into fixed-length segments to
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align them with other data in the training set.

C. Training Methodology

1) Feature Extraction: We use spectral analysis preprocess-
ing block in Edge Impulse to extract spectral features from raw
data samples. The corresponding UMap separation diagram
visualizing the clusters for all 24 classes are shown in Figure
3, with visible separation between most clusters. FFT analysis
with FFT length of 16 on a window size of 3 seconds is used.
Figure 4 illustrates the result after filtering as well as loga-
rithmic spectral power for an example sample. An interesting
observation from Figure 4 is that the gyroscope data carries
more energy than the accelerometer data. This implies that
collected gait data has richer features in angular momentum
relative to acceleration. This observation is consistent for all
data collected with Arduino. Future investigations can explore
equalizing the energy between accelerometer and gyroscope
for more uniform integration of signals.

2) Model Architecture: Proposed model (Figure 5) consists
of four layers, where the first layer is a 2D Convolution
layer with 32 output channels and 3x3 filters. The input to
Convolution layer consists of a vector of 78 FFT-applied
features which is reshaped to 13x6. The Convolution layer is
followed by flatten, and subsequently 3 dense layers with 256,
128 and 32 neurons respectively. The final layer is a softmax
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Fig. 5. Proposed four-layer CNN architecture with one convolutional layer
and three fully-connected (dense) layers. Input vector with 78 features is
reshaped to 13x6 before first layer and output layer has 24 classes.

TABLE I
INFERENCE ACCURACY COMPARISON ON WHUGAIT DATASET#2

[ Model | Inference Accuracy |
CNN+LSTM Baseline [11] 97.33%
CNN-+Attention Baseline [13] 97.67%
Proposed CNN 96.23 %

layer with 24 classes. This network was chosen after extensive
hyperparameter tuning resulting in the best tradeoff between
accuracy performance and model complexity.

3) Model Hyperparameters: The model is trained for 20
epochs with 0.0005 learning rate. During training, 20% of the
training set is used for validation. Batch size is set to 32.

D. Inferencing Pipeline

1) Arduino Nano 33 BLE Sense: Edge Impulse is used to
convert the trained model from FP32 to INT8 precision via
quantization-aware training. Quantized model is then down-
loaded and deployed on to Arduino via runtime scripts that or-
chestrate timed loops for inference and latency measurement.

2) BrainChip Akida: BrainChip’s MetaTF [10] software
development platform is used to convert the pretrained CNN
to an equivalent spiking neural network (SNN), with minimal
impact on model accuracy. Two BrainChip Akida v1 boards
[9] installed on the server (connected to computers through
PCle) are utilized for deployment of the converted SNN model.

III. DEPLOYMENT RESULTS

The trained model is deployed on two edge devices, Arduino
Nano 33 BLE Sense, and BrainChip Akida. As an extension to
a third edge inferencing platform, model deployment is also
performed on a mobile smartphone. This section details the
corresponding model accuracy and hardware metrics.

A. Inference Accuracy

The trained model achieves 96.3% validation accuracy and
96.23% testing accuracy with almost perfect confusion matrix.
As shown in Table I, the proposed small CNN model is able
to achieve performance very close to more complex baseline



Fig. 6. Top: Arduino inference setup with laptop screen showing the output
recognizing one team member via their gait (Arduino was placed inside
pant pocket while walking). Bottom: BrainChip Akida PCle board used for
neuromorphic inference.

models - CNN+LSTM [11] and CNN+Attention [13]. It is to
be noted that proposed model accounts for classification of
four additional classes belonging to the authors along with
the original 20 classes from whuGAIT.

B. Deployment on Arduino Nano 33 BLE Sense

During live deployment on Arduino (Figure 6 top), we
successfully demonstrated accurate prediction of each of the
four team members from live gait. We observed a 2 second
delay from the onset of walking to the generation of ap-
propriate predictions from the model. This overhead could
be related to the prediction smoothing function within the
Arduino deployment code and is a topic for future investi-
gation and improvement. However, once it starts generating
predictions, the inference latency is only about 70 ms with
5 KB active RAM usage. Further, its power consumption is
measured using a power jive to be 125 mW (25 mA current
at 5 V). The results underscore the feasibility of a lightweight
model capable enough to classify 24 classes that can easily fit
into a very small form factor.

C. Deployment on BrainChip Akida

The converted SNN is first mapped to BrainChip Akida
processor (Figure 6 bottom) through MetaTF’s “map” func-
tion defined in the Akida python package. The Akida board
comes with power measurement utilities on device that can
be probed through python functions defined in the Akida
package. Through these utilities, the SNN model is measured
to consume about 72 mW with an average frame rate of 24.82
fps during inference, with model accuracy of 96.12%. The
inference energy consumed is 2.9 mJ/frame. This demonstrates
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Fig. 7. Mobile Phone Deployment

the potential for huge power and energy efficiency of proposed
CNN model and its amenability to neuromorphic platforms
while delivering near state-of-the-art inference accuracy.

D. Deployment on Mobile Phone

To simulate real-world application scenarios, further exper-
imentation is conducted on a mobile device, an iPhone 13,
using Edge Impulse platform. The EI platform has accessible
mobile motion sensor only for a three-axis accelerometer, but
is unable to retrieve the gyroscopic data. Thus the input fea-
tures of the model had to be adjusted from six to three. Due to
differences in coordinate systems, precision, and amplification
between sensors on mobile devices and those on Arduino,
the model deployed on phone requires training with sensor
data collected from the phone (following the same procedures
in Section II). As shown in Figure 7, label MyGait denotes
the gait of the phone owner; label 0 represents a stationary
pattern; labels / and 2 are others’ gaits from the dataset. Once
the mobile device owner starts walking steadily, the model is
capable of identifying the identity based on gait.

IV. CONCLUSION

Our work serves as a feasibility proof for deployment
of very efficient yet highly effective lightweight models on
to small form factor edge devices. Our model trained on
a standard dataset augmented with the team members’ gait
data is able to achieve 96% accuracy on 24 classes, while
consuming only 70 ms inferencing time with 5 KB RAM,
and 125 mW power on Arduino. Further, our work serves as
a first step towards deploying a gait recognition model on a
neuromorphic device such as the BrainChip Akida, incurring
just 72 mW power and 2.9 mJ/frame. Future investigation
will focus heavily on optimizing the model, adding data for
physically challenged and other users for diversification and
bias reduction, and building and optimizing the neuromorphic
SNN model from scratch without conversion.
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