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Abstract—General matrix multiplication (GEMM) is a funda-
mental operation in deep learning (DL). With DL moving increas-
ingly toward low precision, recent works have proposed novel
unary GEMM designs as an alternative to conventional binary
GEMM hardware. A rigorous evaluation of recent unary and
binary GEMM designs is needed to assess the potential of unary
hardware for future DL compute. This paper focuses on unary
GEMM designs for integer-based DL inference and performs a
detailed evaluation of three latest unary design proposals, namely,
uGEMM, uGEMM and fubGEMM, by comparing them to a
conventional binary GEMM. Rigorous post-synthesis evaluations
beyond prior works are performed across varying bit-widths
and matrix sizes to assess the designs’ tradeoffs and determine
optimal sweetspots. Further, we perform weight sparsity analysis
across eight pretrained convolutional neural networks (CNNs)
and the LLaMA2 large language model (LLM). In this work
we demonstrate how unary GEMM can be effectively used for
energy-efficient compute in future edge Al accelerators.

Index Terms—unary computing, matrix multiplication, deep
learning accelerators, low-precision deep learning inference

I. INTRODUCTION

Recent advancements in artificial intelligence (Al), partic-
ularly deep learning (DL), have led to notable achievements,
surpassing human performance in tasks like image and speech
recognition. Despite these successes, computation cost for run-
ning DL models is ever-increasing at an exponential rate [1].
This has led to the development of deep learning accelerators
(DLAs) with dedicated hardware to optimize general matrix
multiplication (GEMM), the fundamental operation in DL.
Prominent examples include tensor cores in modern GPUs and
matrix multiplication units (MXUs) in Google’s Tensor Pro-
cessing Units (TPUs). Additionally, devices such as edge TPU
and NVIDIA’s Jetson exemplify the trend toward edge com-
puting. These DLAs leverage binary arithmetic optimizations
and are characterized by their use of low-precision arithmetic
and optimized dataflow to achieve hardware efficiency.

Unary computing, touted as a promising alternative to
relatively complex binary arithmetic, offers unique advantages
in computational efficiency, especially for low-precision tasks
prevalent in AI/DL. It manifests in two forms: (i) rate-coding
and (ii) temporal-coding. In rate-unary computing, data is en-
coded based on the frequency of 1s, directly proportional to the
represented value. Temporal-unary encoding represents data as
a consecutive sequence of Is followed by Os, with the number

of 1s indicating the data value. Traditionally, rate-unary encod-
ing allows for low-complexity arithmetic hardware suitable for
stochastic computing. It significantly simplifies circuits, such
as using single AND gates as multipliers and multiplexers
as adders [2], providing a reasonable approximation of the
ideal result with an inherent accuracy compromise. In contrast,
temporal-unary encoding enables exact deterministic compute.

Among the latest innovations in this field are three
unary GEMM architectures: (i) uGEMM, a unified rate-and-
temporal-encoded design executing stochastic GEMM opera-
tions [3], (ii) ruGEMM, the first fully-temporal GEMM design
ensuring deterministic compute with full accuracy [4], and
(iii) rubGEMM, a novel temporal-binary hybrid successor
to iuGEMM that significantly reduces latency with rela-
tively modest hardware overhead, improving overall energy
efficiency [5]. Despite comparisons against previous unary
GEMM approaches, a holistic evaluation of the unary GEMM
designs against traditional binary GEMM designs in today’s
DLAs has not been explored in literature.

Unary computing gains prominence in DL inference as the
industry gravitates toward lower precision computing, pro-
pelled by advancements in quantization techniques. Although
precision scaling poses challenges during training, strides have
been made in retaining accuracy from FP32 (32-bit floating
point) to as low as FP8 (8-bit floating point) for training and
as low as INT4 and INT2 (4-bit and 2-bit integer formats,
respectively) for inference [6, 7]. In the domain of large
language models (LLMs), NVIDIA’s Grace Hopper, with its
FP8 Transformer Engine, demonstrates significant speedups
for transformer-based models. Latest works like BitNet b1.58
[8], utilizing ternary weights, pave the way for 1-bit LLMs.

This paper aims to explore the potential of unary GEMM
in enhancing the computational efficiency of edge DLAs
for low-precision Al inference. By comparing three latest
unary GEMM designs that outperform prior unary works with
traditional binary GEMM, we seek to understand their relative
strengths and limitations. This comparative analysis, comple-
mented by sparsity profiling of DL models, aims to provide
insights and recommendations for future DLAs to facilitate
more sustainable edge Al deployment. Key contributions are:

o Current landscape for unary GEMM compute is largely

unevaluated, with unary-based designs developed in an
ad-hoc manner. Our work is a first attempt at contextual-
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Fig. 1: Four GEMM designs: uGEMM encodes both inputs
as unary (rate/temporal), iuGEMM encodes both inputs as
temporal-unary, tubGEMM encodes one input as temporal-
unary and other binary, and the conventional binary GEMM.
The vertical ordering of the four designs reflects a spectrum
from fully-unary design (green) to a fully-binary design (red).

izing the latest unary research for INT-based Al inference
by juxtaposing and evaluating three recent unary GEMM
designs against a traditional binary GEMM. Prior works
[31[4]1[5] only compare against other unary GEMM.

o Previous works [3][4][5] utilize different process tech-
nologies (TSMC45 vs. Nangate45) and compare designs
using only one configuration (8-bit, 16x16 GEMM). This
paper extends beyond those works by comparing across
varying bit-widths and matrix sizes using a single tech-
nology (Nangate45). This enables fair comparison across
all architectures, providing a more holistic evaluation.

o Weight sparsities of eight CNNs and LLaMA2 LLM are
profiled to assess unary designs’ ability to inherently
exploit sparsity to improve latency and energy efficiency.

o Design tradeoffs are assessed amongst the unary and
binary designs, and the optimal design sweetspot for hard-
ware efficiency is determined. Further, potential future
directions for edge DLAs are discussed, anticipating a
new wave of unary arithmetic research for AI compute.

II. BACKGROUND ON UNARY GEMM ARCHITECTURES
We first review the three unary GEMM designs (Figure 1).

A. uGEMM

uGEMM [3] adopts a unified-unary GEMM architecture,
supporting both rate-coding and temporal-coding. It introduces
unified-unary computing units for multiplication (uMULT),
scaled addition (uSADD), and non-scaled addition (uN-
SADD). To mitigate long latency and high energy consump-
tion, it incorporates early termination, reporting a 98% in-
crease in energy efficiency and a minimal loss of less than

0.5% from the ideal output. While being the first to support
fully streaming execution, a non-streaming variant is evaluated
for a fair comparison with other designs, using binary inputs
converted to unary-coded inputs. uGEMM requires 2% cycles
for a GEMM computation, with w as bitwidth. Parallel adder
trees are used to accumulate all partial sum bitstreams.

B. tuGEMM

tuGEMM [4] is the pioneering counter-based GEMM
architecture supporting deterministic computing with fully
temporal-encoding. Two design variants, serial and parallel,
offer different area-latency tradeoffs. tuGEMM achieves sig-
nificantly lower area and power consumption but at the cost
of quadratically worse latency relative to uGEMM. Authors
in [4] present post-synthesis results for different low bit-
precisions and matrix sizes but comparison with uGEMM is
only performed for 8-bit 16x16 GEMM. Latency for iuGEMM
scales exponentially with bitwidth due to operation on nested
temporal-coded bitstreams, leading to a worst-case latency of
N % (2w_1)2 cycles for a GEMM compute, with N as the
common dimension of input matrices and w as the bitwidth.

C. ubGEMM

tubGEMM [5] utilizes hybrid temporal-unary and binary
(tub) encoding, performing exact (deterministic) computation
using sequential multipliers and accumulators. Compared to
uGEMM, it achieves substantial reductions in area (89%),
power (87%), and energy (50%) for 8-bit 16x16 GEMM in
45nm CMOS. Notably, authors in [5] also evaluate trubGEMM
across varying bitwidths and matrix sizes on TSMC N5
process node. Relative to iuGEMM, rubGEMM reduces worst-
case latency to N * (2~2) cycles, optimizing its temporal
encoding with a novel 2-unary scheme that halves the latency.

III. EVALUATION METHODOLOGY

This section details the evaluation methodology for post-
synthesis Power-Performance-Area (PPA), ensuring fair com-
parison among all GEMM designs. Additionally, the setup for
weight sparsity analysis profiled for DL models is described.

A. Setup for PPA Analysis

All GEMM designs are synthesized using Nangate45 open-
source library with Synopsys Design Compiler, operating
at a clock frequency of 400 MHz. Synthesis is performed
exhaustively for 2-, 4-, and 8-bits across two matrix sizes:
16x16 and 32x32. The chosen bitwidths and matrix sizes are
amenable for edge AI inference in modern mobile system-
on-chips (SoCs). All GEMM designs implement non-scaled
bipolar compute [3] and utilize the outer product dataflow
as in [4, 5]. The binary-based GEMM (‘bGEMM’) serves
as our baseline benchmark. bGEMM is synthesized using
DesignWare multipliers and adders, and incurs N cycles for
a single GEMM compute with outer product dataflow. Along
with area and power results, we further derive energy and area-
delay product (ADP) metrics based on the GEMM latencies.
Note that ADP inherently captures and normalizes the spatio-
temporal trade-offs in the unary GEMM designs, such as in



TABLE I: 45nm post-synthesis area (in pm?) for the four
GEMM designs with varying bit-widths and matrix sizes.

TABLE II: 45nm post-synthesis power (in mW) for the four
GEMM designs with varying bit-widths and matrix sizes.

serial (considered here) vs. parallel uGEMM (omitted for
brevity). Worst-case (WC) latency is calculated by multiplying
compute cycles (Sec. II) with the clock period (2.5 ns).

B. Setup for Weight Sparsity Analysis

Two types of weight sparsities are considered: 1) Word
sparsity signifies zero values (percentage of weights that have
zero magnitude); 2) Bit sparsity denotes small magnitude
values (percentage of ‘0’ bits in the temporal-unary bitstream).
In the extreme case when all bits are ‘0’s, bit sparsity subsumes
word sparsity. Higher bit sparsity (b_spa) implies a large
number of ‘O’ bits (i.e., small number of ‘1’ bits) in the
temporal-unary bitstream, leading to lower dynamic latency
(and energy consumption) for iuGEMM and tubGEMM:

Dynamic Latency = WC Latency * (1 — b_spa) (1)

Eight pretrained quantized INT8 CNNs are imported from
Torchvision for sparsity profiling: 1) MobileNetV2, 2) Mo-
bileNetV3, 3) InceptionV3, 4) ShuffleNetV2, 5) GoogleNet,
6) ResNet18, 7) ResNet50, and 8) ResNeXt101. These models
are widely used in leading DL literature. Similar to the
methodology in [5], maximum values within each feature map
are tracked, and the corresponding counts are averaged across
convolution and fully connected layers to derive bit sparsity.

Additionally, a pretrained quantized INT32 LLaMA2-70B
model from Huggingface is profiled. Due to constraints on
accessing low-precision LLaMA2 model weights, a pragmatic
approach is adopted by considering the most significant bits
(MSBs) for sparsity profiling, as used in prior works [7, 9]
without impacting the distribution and sparsity significantly.
The weights are extracted from two fully connected (FC)
layers in the attention layer and a 2-layer feed-forward network
(FFN) after the attention layer. We also profile the query (Q)
and key (K) tokens in the attention layer, using small repre-
sentative inputs. Average maximum value per 32x32 block is
considered, as largest value bottlenecks GEMM compute.

IV. EXPERIMENTAL RESULTS

This section presents four types of evaluation for the GEMM
designs (uGEMM, ruGEMM, tubGEMM, bGEMM) across 8§,
4, 2-bit precisions and 16x16, 32x32 matrix sizes: 1) 45nm
CMOS post-synthesis area-power results, 2) Energy results de-
rived from worst-case latencies, 3) Area-Delay Product (ADP)
results derived from worst-case latencies, and 4) Workload-
dependent sparsity and corresponding latency-energy results.
Further, PPA results are also shown for larger 64x64 and
128x128 matrix sizes for 4-bit precision.

Configuration uGEMM tuGEMM | tubGEMM | bGEMM Configuration | uGEMM | tuGEMM | tubGEMM | bGEMM
2-bit 16x16 99,445.7 13,436.4 19,112.6 16,739.1 2-bit 16x16 42.2 4.9 5.0 7.7
32x32 | 791,794.4 52,2724 76,375.5 67,201.7 32x32 323.8 18.3 19.8 30.9
4-bit 16x16 | 203,920.7 29,061.0 38,912.6 44,925.8 4-bit 16x16 64.1 9.2 9.9 22.4
32x32 | 1,799,961.0 | 117,261.3 151,933.6 180,458.6 32x32 513.6 37.2 390.1 383
8-bit 16x16 445,396.2 61,064.0 99,916.8 132,786.9 . 16x16 100.8 19.7 26.1 72.8
32x32 | 3,689,829.0 | 235,470.9 338,692.7 | 560,778.5 8-bit 32x32 784.4 747 90.9 3013

A. Area-Power Evaluation

Tables I and II illustrate the 45nm post-synthesis cell area
and total power, and are pivotal for gauging trade-offs in
GEMM hardware efficiency for Al inference. The lowest
(best) and highest (worst) values are marked in green and
red, respectively. tuGEMM outperforms all other designs in
area-power efficiency across all configurations owing to its
simplistic counter-based streamlined architecture without the
need for any huge adder trees. As it relies predominantly
on counters for the temporal accumulation of vector-vector
products, it incurs very high latency leading to highest energy
consumption among all designs (Table III as will be explained
in Sec. IV-B). tubGEMM is the next optimal design in area-
power efficiency across 4-bits and 8-bits. bBGEMM outper-
forms tubGEMM in area at 2-bits but scales considerably
worse with increasing bitwidth. uGEMM, while versatile in
supporting both rate-coding and temporal-coding, exhibits
lower area-power efficiency across all designs due to its unified
unary approach. Figure 2 plots these results for 32x32 GEMM.

More specifically, uGEMM, rubGEMM and bGEMM are
approximately 7x, 1.5x and 2x worse than tuGEMM on aver-
age for 16x16 GEMM area. uGEMM scales poorly with matrix
size resulting in an increased gap of 15x for 32x32 GEMM,
while the gap remains consistent for iubGEMM and bGEMM,
implying ruGEMM, fubGEMM and bGEMM scale similarly
with matrix sizes. In power, tuGEMM and rubGEMM are
close and consistently outperform uGEMM and bGEMM,
with uGEMM consuming the most power (about 10x for 8-
bit 32x32 compared to tuGEMM). The power efficiency of
tuGEMM and rubGEMM is superior mainly because temporal-
unary encoding results in only two signal transitions due to
consecutive ones followed by zeros, in contrast to rate-unary
and binary encoding with multiple signal transitions.

In terms of bitwidth scaling, all designs scale linearly on log
scale (green trendlines in Figure 2). However, the slopes are
different for each of the designs (lower slope indicates better
scaling). Specifically, for area, tuGEMM and tubGEMM scale
best (2.12 slope), closely followed by uGEMM (2.16) and
finally bBGEMM (2.90). Similarly, the four designs incur slopes
of 2.02, 2.15, 1.56 and 3.25 respectively for power, indicating
best scaling for uGEMM. uGEMM’s superior bitwidth scaling
is due to its simpler stochastic single-gate multiplier. In con-
trast, with increasing matrix sizes, the adder trees in uGEMM
become significantly denser resulting in poor scaling.

Key Takeaway: tuGEMM has the best area-power effi-
ciency, closely followed by tubGEMM and bGEMM. uGEMM
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Fig. 2: 45nm post-synthesis area and power scaling across 2,
4, and 8-bits for 32x32 matrix size. Y-axis is in log scale.

is almost 10x worse. tuGEMM and tubGEMM scale well with
bitwidths and matrix sizes. uGEMM scales well with bitwidths
but poorly with matrix sizes, and vice versa for bGEMM.

B. Energy Evaluation with Worst-Case Latency

Table III shows energy consumption based on worst-case
latency for each GEMM design. Despite its optimal area-
power efficiency, tuGEMM incurs the highest energy due to
its nested counter-based temporal accumulation, resulting in
significant latency for 8-bits and above. bGEMM is the most
energy-efficient for 4- and 8-bits owing to just N cycles
per GEMM independent of bitwidth, whereas rubGEMM
outperforms bGEMM for 2-bits. tubGEMM is reasonably
close (1.8x) to bGEMM’s energy consumption at 4 bits, with
uGEMM trailing behind (2.9x). With these findings, 4-bit
precision emerges as a focal point for detailed analysis. Further
post-synthesis results for larger Google EdgeTPU (64x64) and
CloudTPUv3 (128x128) matrix sizes are detailed in Table IV
for 4-bits. It shows :uGEMM as most efficient in area and
power but least in energy, as expected. Notably, rubGEMM
consumes just 1.2x more energy than bGEMM for EdgeTPU
(64x64) but outperforms bGEMM at CloudTPUV3 (128x128)
array size, resulting in 12% more energy efficiency, even
with worst-case latency. This suggests optimal scalability for
tubGEMM targeting DLAs with large (beyond 64x64) 4-bit
and 2-bit processing element (PE) arrays.

Key Takeaway: tubGEMM is most energy-efficient at 2-
bits, and is comparable with bGEMM at 4-bits. For large
PE arrays, tubGEMM emerges as a better candidate than
bGEMM, owing to its high scalability of energy efficiency
with matrix sizes, even with worst-case latency.

C. Area-Delay Product Evaluation with Worst-Case Latency

Table IV also shows Area-Delay Product (ADP) values for
64x64 and 128x128 matrix sizes. ADP is a useful metric
to analyse the spatio-temporal trade-offs of GEMM designs.
Table IV shows that bGEMM has the lowest (best) ADP due
to its minimal latency, closely followed by tubGEMM with

TABLE III: 45nm post-synthesis energy (in nJ) for worst-case
GEMM latencies with varying bit-widths and matrix sizes.

Configuration | uGEMM | wmGEMM | tubGEMM | bGEMM
2-bit 16x16 0.42 0.78 0.20 0.31
32x32 3.24 5.86 1.58 247
4-bit 16x16 2.56 23.55 1.58 0.90
32x32 20.54 190.46 12.51 7.06
8-bit 16x16 64.51 12,910.59 66.82 291
32x32 502.02 97,910.78 465.41 25.70

TABLE IV: 45nm post-synthesis area, power, and energy (with
worst-case latency) for EdgeTPU (64x64) and Cloud TPUv3
(128x128) GEMM sizes for 4-bit precision.

Configuration uGEMM | tuGEMM | tubGEMM | bGEMM
4-bit Area | 64x64 15.89 0.46 0.59 1.09
(mm?) | 128x128 140.24 1.83 2.41 6.64
4-bit Power | 64x64 | 4,115.21 145.52 154.42 496.77 |
(mW) | 128x128 | 32,973.04 | 57928 | 62092 [ 2,794.80 |
4-bit Energy | 64x64 | 16461 | 1,490.12 | 98.83 [ 7948 |
(nJ) | 128x128 | 131892 | 11,863.65 | 79478 | 89434 |
4-bit ADP | 64x64 [ 6356 [ 47104 ] 377.6 [ 1744 |
(mm?-ns) [ 128x128 | 5,609.6 | 37,4784 | 30848 | 2,1248 |

2.2x and 1.5x higher ADP for 64x64 and 128x128 arrays,
respectively (this gap is reduced with increasing matrix sizes).
uGEMM’s ADP is ~3x higher than bGEMM on average and
tuGEMM’s ADP is ~20x higher (infeasibly large).

Key Takeaway: Despite unary designs having better area
than bGEMM, the substantial latency increase results in worse
ADP, indicating potential room for area-latency improvement.

D. Sparsity-Driven Latency-Energy Evaluation

The weight sparsity profiling results are summarized in
Table V. Across most CNN models, there is a consistent word
sparsity of approximately 2%, with MobileNetV3 being the
outlier with 9.5% of its weights as zeros. For the LLaMA2-
70B LLM model, the 8-bit self-attention tokens exhibit com-
parable weight sparsity, averaging around 2.8% (equivalent to
approximately 2B zero weights out of the total 70B weights).
4-bit (36%) and 2-bit (84%) word sparsities are significantly
higher. In contrast, the attention FC and FFN layers involve
much lower word sparsities (negligible for 8-bits).

Bit sparsity subsumes word sparsity and directly trans-
lates to latency and energy improvements for ruGEMM and
tubGEMM. CNNs display significantly better bit sparsity
(~43%) compared to LLM (negligible for 8-bit FC/FFN layers
and ~30% for tokens). 4- and 2-bit values show varying
sparsities for LLM. Plugging in the bit sparsity values from
Table V (in fractional form) into Equation 1, DL workload-
dependent energy values are derived for 8-, 4-, and 2-bits for
32x32 tuGEMM and rubGEMM. Note, only the two temporal-
unary designs can leverage bit sparsity. These values are
plotted to the right in Figure 3 with worst-case energy values
to the left. Three notable improvements for tubGEMM upon
leveraging sparsity are: 1) Enhanced 2-bit energy efficiency,
further increasing the gap with bGEMM. 2) Earlier cross-
over point with bGEMM, indicating rubGEMM can now
outperform or perform on par with bGEMM for 3-bits. 3)
More discernable energy gap with uGEMM at 8-bits.



TABLE V: Profiled weight sparsities of CNNs and LLM.
Word sparsity denotes percentage of zero weights; bit sparsity
denotes percentage of zero bits within temporal-unary weights.

CNN ‘ Word (%) 8 bits ‘ Bit (%) 8 bits
MobileNetV2 ‘ 2.25 ‘ 44.66
MobileNetV3 ‘ 9.52 ‘ 38.59

GoogleNet | 1.91 | 4591
InceptionV3 | 1.99 | 45.61
ShuffleNetV3 ‘ 1.43 ‘ 47.18

ResNet18 \ 2.04 \ 453

ResNet50 | 245 | 46.24
ResNeXt101 ‘ 2.64 ‘ 44.23

LLaMA2-70B Layer (LLM) ‘ Word (%) 2/4/8 bits ‘ Bit (%) 2/4/8 bits

Attention FC layer weight | 20.7 /2.85/0.0613 | 50.00 / 12.50 / 0.82
| 20.8/3.02/0.0524 | 50.00/12.5/0.80
82.8/350/2.71 | 0.56/8.89/2884

85.1/37.4/294 | 819/858/3252

FFN layer weight

Self attention @ |
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Fig. 3: Energy consumption for 32x32 GEMM across 8-, 4-
and 2-bits. Y-axis is in log scale. Compared to left worst-case
plot, note for iubGEMM, increased energy efficiency at 2 bits,
earlier cross-over point with bGEMM, and larger energy gap
to uGEMM at 8 bits, with sparsity (right plot).

Key Takeaway: Overall, tubGEMM stands out as the best
design for low-precision Al inference (4 and 2 bits) due to its
high area-power-energy efficiency, further enhanced through
bit sparsity in DL workloads. tuGEMM’s low hardware com-
plexity makes it reasonable for applications (especially 2 bits)
where area and power are highly constrained but high latency
can be tolerated. uGEMM is suitable where the compute
infrastructure demands rate-unary inputs, particularly for small
matrix sizes. Finally, bGEMM is desirable for low-latency
compute, especially for 8-bits and above.

V. POTENTIAL FOR UNARY-BASED Al COMPUTE

Our findings suggest the following areas for further explor-
ing of unary based designs for energy-efficient Al inference:
1) Temporal-Unary Compute: While rate-unary methods
in stochastic computing have been widely studied, temporal-
unary computing remains under-explored. Temporal-unary de-

signs like twGEMM and rmbGEMM, which use standard
digital circuits, show promise for Al applications. Stochas-
tic computing can lead to accuracy loss, as seen when a
96.08% accurate INT8 quantized MLP model drops to 94.7%
with uGEMM. Temporal-unary, however, offers deterministic
computation without this accuracy degradation. The n-unary
encoding from [5] presents opportunities for further latency
and energy efficiency improvements, with possible schemes to
offset any trade-offs. With the rubGEMM design displaying
PPA results close to conventional binary GEMM design,
further design optimization can lead to it outperforming across
all configurations, especially for weights of 2-4 bits.

2) Leveraging Sparsity: The sparsity results in Table V and
analysis in Sec. IV-D highlight opportunities for bit sparsity
exploitation. Given the growing importance of pruning and
SparseML libraries in edge Al, naturally exploiting sparsity, as
seen in uGEMM and rubGEMM, offers substantial prospects
for improving latency and energy efficiency.

3) Low-Precision Compute: Given the ongoing advance-
ments in quantization techniques [6-9], Al inference is pro-
gressively embracing ultra-low bit-precisions. This trend af-
fords unary designs the opportunity for exponential reductions
in compute latency, rendering them a viable alternative to
binary-based processing elements for 4 bits and below.
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